A SHORT PROOF OF ZHELUDEV'S THEOREM

F. GESZTESY AND B. SIMON

ABSTRACT. We give a short proof of Zheludev's theorem that states the existence of precisely one eigenvalue in sufficiently distant spectral gaps of a Hill operator subject to certain short-range perturbations. As a by-product we simultaneously recover Rofe-Beketov's result about the finiteness of the number of eigenvalues in essential spectral gaps of the perturbed Hill operator. Our methods are operator theoretic in nature and extend to other one-dimensional systems such as perturbed periodic Dirac operators and weakly perturbed second order finite difference operators. We employ the trick of using a selfadjoint Birman-Schwinger operator (even in cases where the perturbation changes sign), a method that has already been successfully applied in different contexts and appears to have further potential in the study of point spectra in essential spectral gaps.

Our main hypothesis reads:

(I) Let $V \in L^1_{loc}(\mathbb{R})$ be real-valued and of period a > 0, and suppose $W \in L^1(\mathbb{R}, (1+|x|) dx)$ to be real-valued, $W \neq 0$ on a set of positive Lebesgue measure.

Given V, one defines the Hill operator H_0 in $L^2(\mathbb{R})$ as the form sum of the Laplacian in $L^2(\mathbb{R})$,

$$-\frac{d^2}{dx^2} \quad \text{on } H^2(\mathbb{R}),$$

and the operator of multiplication by V,

(2)
$$H_0 := -\frac{d^2}{dx^2} \dotplus V.$$

(To be more precise, since V is not assumed to be continuous, we should define H_0 as a direct integral over reduced operators on $L^2([0, a])$, see [12, §XIII.16].) Similarly, the perturbed Hill operator H_g is defined as the form sum in $L^2(\mathbb{R})$

$$(3) H_g := H_0 \dotplus gW, g > 0.$$

Standard spectral theory [2, 10, 11, 12] then yields that

(4)
$$\sigma(H_0) = \sigma_{ac}(H_0) = \bigcup_{n \in \mathbb{N}} [E_{2(n-1)}, E_{2n-1}], \\ -\infty < E_0 < E_1 \le E_2 < E_3 \le E_4 < \cdots,$$

Received by the editors October 16, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 34B25, 34B30, 47E05. The second author was partially funded by NSF Grant DMS-8801981.

(5)
$$\sigma_{p}(H_{0}) = \sigma_{sc}(H_{0}) = \varnothing, \sigma_{ess}(H_{g}) = \sigma_{ac}(H_{g}) = \sigma(H_{0}), \qquad \sigma_{sc}(H_{g}) = \varnothing.$$

The spectral gaps of H_0 (the essential spectral gaps of H_g) are denoted by

(6)
$$\rho_0 := (-\infty, E_0), \qquad \rho_n := \begin{cases} (E_{2n-1}, E_{2n}), & E_{2n-1} < E_{2n}, \\ \emptyset, & E_{2n-1} = E_{2n}, & n \in \mathbb{N}. \end{cases}$$

Moreover one has

(7)
$$\sigma_{\mathbf{p}}(H_g) \subset \bigcup_{n \in \mathbb{N}_0} \rho_n$$

and all eigenvalues of H_g are simple. (Here $\sigma(\cdot)$, $\sigma_{ac}(\cdot)$, $\sigma_{sc}(\cdot)$, and $\sigma_p(\cdot)$ denote the spectrum, absolutely continuous spectrum, singularly continuous spectrum, and point spectrum (the set of eigenvalues) respectively.) Following the usual terminology we call ρ_n an open spectral gap whenever $\rho_n \neq \emptyset$.

The purpose of this paper is to give a short proof of the following theorem that summarizes results of Firsova, Rofe-Beketov, and Zheludev:

Theorem 1 [3, 4, 6, 13, 14, 17, 18]. Assume Hypothesis (I). Then

- (i) H_g has finitely many eigenvalues in each open gap ρ_n , $n \ge 0$.
- (ii) H_g has at most two eigenvalues in every open gap ρ_n for n large enough.
- (iii) If $\int_{\mathbb{R}} dx W(x) \neq 0$, H_g , g > 0 has precisely one eigenvalue in every open spectral gap ρ_n for n sufficiently large.

Remark 2. Parts (i) and (ii) are due to Rofe-Beketov [13]. Part (iii), under the additional conditions $\operatorname{sgn}(W) = \operatorname{constant}$, $W \in L^1(\mathbb{R}; (1+x^2)dx)$, V piecewise continuous and W bounded is due to Zheludev [17]. In [18] the condition $\operatorname{sgn}(W) = \operatorname{constant}$ has been replaced by $\int_{\mathbb{R}} dx \, W(x) \neq 0$ but it has been left open as to whether there are one or two eigenvalues in sufficiently distant spectral gaps ρ_n . The present version of (iii) was first proved by Firsova [3, 4] (see also [6]) and Rofe-Beketov [14] on the basis of ODE methods. The case of a perturbed Hill operator on the halfline $(0, \infty)$ has also been studied in [8].

Before we give a short proof of Theorem 1 based on operator theoretic methods we need to prepare various well-known results on Hill operators and establish some further notation.

The Green's function $G_0(z, x, x')$ (the integral kernel of the resolvent $(H_0 - z)^{-1}$) reads

(8)
$$G_{0}(z, x, x') = W(\psi_{+}(z, \cdot, x_{0}), \psi_{-}(z, \cdot, x_{0}))^{-1} \times \begin{cases} \psi_{-}(z, x, x_{0})\psi_{+}(z, x', x_{0}), & x \leq x', \\ \psi_{+}(z, x, x_{0})\psi_{-}(z, x', x_{0}), & x \geq x', \\ x_{0} \in [0, a], z \in \mathcal{R}. \end{cases}$$

Here W(f, g) denotes the Wronskian of f and g,

(9)
$$W(f, g)(x) := f(x)g'(x) - f'(x)g(x),$$

and ψ_{\pm} are the Floquet solutions of H_0 defined by (10)

$$\psi_{\pm}(z, x, x_0) := c(z, x, x_0) + \phi_{\pm}(z, x_0)s(z, x, x_0), \qquad z \in \mathcal{R}, \ x \in \mathbb{R},$$
$$\psi_{\pm}(z, x_0, x_0) = 1, \qquad z \in \mathcal{R},$$

$$\phi_{\pm}(z, x_0) := \{ \Delta(z) \pm [\Delta(z)^2 - 1]^{1/2} - c(z, x_0 + a, x_0) \} s(z, x_0 + a, x_0)^{-1},$$

$$(11)$$

where Δ denotes the discriminant (Floquet determinant) of H_0 ,

(12)
$$\Delta(z) := [c(z, x_0 + a, x_0) + s'(z, x_0 + a, x_0)]/2, \qquad z \in \mathbb{C},$$

and s, c is a fundamental system of distributional solutions of $H_0f = zf$, $z \in \mathbb{C}$, with

(13)
$$s(z, x_0, x_0) = 0, \quad s'(z, x_0, x_0) = 1, \\ c(z, x_0, x_0) = 1, \quad c'(z, x_0, x_0) = 0, \quad z \in \mathbb{C}.$$

Moreover, ψ_{\pm} are meromorphic functions on the two-sheeted Riemann surface \mathscr{R} of $[\Delta(z)^2-1]^{1/2}$ obtained by joining the upper and lower rims of two copies of the cut plane $\mathbb{C}\setminus\sigma(H_0)$ (or $\mathbb{C}\setminus\overline{[\rho(H)\cap\mathbb{R}]}$, $\rho(\cdot)$ the resolvent set) in the usual (crosswise) way. \mathscr{R} is assumed to be compactified if only finitely many spectral gaps of H_0 are open, otherwise \mathscr{R} is noncompact. Since we do not need this Riemann surface explicitly in the following considerations we assume that a suitable choice of cuts has been made and omit further details.

We note that s, c, and Δ are entire with respect to $z \in \mathbb{C}$, and Δ and G_0 are independent of the chosen reference point $x_0 \in [0, a]$. Especially, by considering a particular open gap $\rho_n = (E_{2n-1}, E_{2n})$, $n \ge 1$, one can always choose x_0 in such a way that the zeros of $s(z, x_0 + a, x_0)$ (there is precisely one simple zero in each $\overline{\rho_n}$, $n \ge 1$, they constitute the Dirichlet eigenvalues of H_0 restricted to $(x_0, x_0 + a)$ are not at $\partial_{\rho_n} = \{E_{2n-1}, E_{2n}\}$. (This fact is relevant in (11) and will be needed later on in (20).) From now on, when considering a particular gap ρ_n , we always assume that ρ_n is open, i.e., $\rho_n \ne \emptyset$. For simplicity we shall also assume that $E_0 \ge 1$ and for notational convenience we introduce $E_{-1} = 1$ (in order not to distinguish n = 0 and $n \ge 1$ in the following).

We also note that

(14)
$$W(\psi_{+}(z,\cdot,x_{0}),\psi_{-}(z,\cdot,x_{0})) = -2[\Delta(z)^{2} - 1]^{1/2}s(z,x_{0} + a,x_{0})^{-1},$$
$$z \in \mathcal{R}.$$

and

(15)
$$-2[\Delta(z)^2 - 1]^{1/2}G_0(z, x, x) = s(z, x + a, x), \qquad z \in \mathbb{C}, \ x \in \mathbb{R}.$$

Moreover, restricting z to the upper sheet \mathcal{R}_+ of \mathcal{R} from now on, the Floquet solutions ψ_{\pm} have the particular structure

(16)
$$\psi_{\pm}(z, x, x_0) = e^{\mp \alpha(z)(x - x_0)} p_{\pm}(\alpha(z), x, x_0), \\ p_{\pm}(\alpha(z), x + a, x_0) = p_{\pm}(\alpha(z), x, x_0), \qquad z \in \mathcal{R}_+, x \in \mathbb{R},$$

where $\alpha(z)$ is given by

(17)
$$\alpha(z) := a^{-1} \ln\{\Delta(z) + [\Delta(z)^2 - 1]^{1/2}\}, \qquad z \in \mathcal{R}_+, \\ \cosh[\alpha(z)a] = \Delta(z), \qquad \sinh[\alpha(z)a] = [\Delta(z)^2 - 1]^{1/2},$$

and the branch of $[\Delta(z)^2 - 1]^{1/2}$ on \mathcal{R}_+ is chosen such that

(18)
$$\psi_{\pm}(z,\cdot,x_0) \in L^2(0,\pm\infty), \qquad z \in \mathcal{R}_+ \setminus \sigma(H_0).$$

 α (resp. $\alpha - \pi i$) is positive on open gaps ρ_{2n} (resp. ρ_{2n+1}), $n \in \mathbb{N}_0$, and monotonic near E_0 , E_{4n-1} , E_{4n} (resp. E_{4n-3} , E_{4n-2}), $n \in \mathbb{N}$.

We also note the asymptotic relations

(19)
$$s(\lambda, x_0 + a, x_0) = \lambda^{-1/2} \sin[\lambda^{1/2} a] + O(\lambda^{-1}),$$

and [18]

(20)
$$p_{\pm}(\alpha(E_{r(n)}), x, x_{0})^{2} = \frac{1}{n \to \infty} \frac{1}{2} \left[1 + \frac{a^{2}}{4n^{2}\pi^{2}} \frac{c'(E_{r(n)}, x_{0} + a, x_{0})}{s(E_{r(n)}, x_{0} + a, x_{0})} \right] \cdot \left\{ 1 - \cos[(4n\pi/a)(x - x_{0}) + 2\delta_{r(n)}] + O(n^{-1}) \right\},$$

(21)
$$\delta_{r(n)} := \arctan \left\{ (2n\pi/a) \left| \frac{s(E_{r(n)}, x_0 + a, x_0)}{c'(E_{r(n)}, x_0 + a, x_0)} \right|^{1/2} \right\},$$
$$r(n) = 4n - 1, 4n,$$

and similarly for the odd open gaps ρ_{2n+1} , $n \in \mathbb{N}_0$. (In order to avoid that $s(E_{r(n)}, x_0 + a, x_0) = 0$ in (20), we tacitly made use of the fact that we may choose $x_0 = x_0(n)$ appropriately without affect Δ and the Green's function G_0 in (8). Such a choice will always be assumed in the following.)

Given these preliminaries we can split the Green's function G_0 into two parts as follows. For simplicity we only consider even open gaps ρ_{2n} , $n \in \mathbb{N}_0$, in details. The analysis for odd gaps ρ_{2n+1} , $n \in \mathbb{N}_0$, is completely analogous.

(22)
$$G_{0}(\lambda, x, x') = -[s(\lambda, x_{0} + a, x_{0})/2 \sinh \alpha(\lambda)] p(\alpha(E_{4n}), x, x_{0}) + p(\alpha(E_{4n}), x', x_{0}) + R_{0}(\lambda, x, x'),$$

$$p(\alpha(E_{4n}), x', x_{0}) := p_{+}(E_{4n}), x, x_{0},$$

$$= p_{-}(\alpha(E_{4n}), x, x_{0}), \qquad x \in \mathbb{R},$$

$$(4n-1)$$

for $\lambda \in [E_{4n} - \varepsilon_n, E_{4n}]$ $(\lambda \in [E_{4n-1}, E_{4n-1} + \varepsilon_n])$ with $\varepsilon_n > 0$ sufficiently small, $n \in \mathbb{N}_0$. One has the bound [13, 17]

(23)
$$|R_0(\lambda, x, x')| \le C|E_{4n-1}|^{-1/2}(1+|x|+|x'|),$$

 $\lambda \in \overline{\rho_{2n}}, \ \alpha(\lambda) \in [0, \varepsilon_n], \ x, x' \in \mathbb{R},$

with C independent of $n \in \mathbb{N}_0$. Since Zheludev [17, 18] relies on the estimate (23), he is forced to assume $W \in L^1(\mathbb{R}; (1+x^2)dx)$ in order to make the integral kernel $|W(x)|^{1/2}R_0(\lambda, x, x')|W(x')|^{1/2}$ to be the integral kernel of a bounded (in fact Hilbert-Schmidt) operator in $L^2(\mathbb{R})$. In order to avoid this limitation we shall employ instead a device from [1] and use a different splitting of G_0 :

(24)
$$G_{0}(z, x, x') = G_{0}(z, x_{0}, x_{0})^{-1}G_{0}(z, x, x_{0})G_{0}(z, x_{0}, x') + G_{0,x_{0}}^{D}(z, x, x') = \gamma(z)P_{x_{0}}(z, x, x') + G_{0,x_{0}}^{D}(z, x, x'),$$

$$\gamma(z) := -\{s(z, x_{0} + a, x_{0})/2 \sinh[\alpha(z)a]\},$$

where $G_{0,x_0}^D(z,x,x')$ denotes the integral kernel of the resolvent of the Dirichlet operator H_{0,x_0}^D obtained from H_0 by imposing an additional Dirichlet boundary condition at x_0 . Explicitly we have (25)

$$P_{x_0}(\lambda, x, x') = \begin{cases} \psi_{-}(\lambda, x, x_0), & x \leq x_0 \\ \psi_{+}(\lambda, x, x_0), & x \geq x_0 \end{cases} \begin{cases} \psi_{-}(\lambda, x', x_0), & x' \leq x_0 \\ \psi_{+}(\lambda, x', x_0), & x' \geq x_0 \end{cases}, \\ \lambda \in \overline{\rho_{2n}}, & n \in \mathbb{N}_0, \end{cases}$$

and, similar to (3.7) in [1],

$$(26) \quad |G_{0,x_0}^D(\lambda\,,\,x\,,\,x')| \leq C|E_{2n-1}|^{-1/2}|x_<| \leq C|E_{2n-1}|^{-1/2}|x|^{1/2}|x'|^{1/2}\,, \\ \lambda \in \overline{\rho_{2n}}\,, \quad n \in \mathbb{N}_0\,, \quad \alpha(\lambda) \geq 0 \text{ small enough}\,,$$

where C is independent of n and

(27)
$$|x_{<}| := \begin{cases} 0, & x \le x_{0} \le x' \text{ or } x' \le x_{0} \le x, \\ \min(|x - x_{0}|, |x' - x_{0}|) & \text{otherwise.} \end{cases}$$

In order to derive (26) one separately considers the four regions $x \le x' \le x_0$, $x' \le x \le x_0$, $x_0 \le x' \le x$, $x_0 \le x \le x'$ (the cases $x \le x_0 \le x'$, $x' \le x_0 \le x$ being trivial) and uses the mean value theorem to bound

(28)
$$|p_{+}(\alpha(\lambda), y, x_{0}) - p_{-}(\alpha(\lambda), y, x_{0})| \leq D\alpha(\lambda)|y - x_{0}|,$$

$$\lambda \in \overline{p_{2n}}, \ \alpha(\lambda) \geq 0 \text{ small enough},$$

with D independent of $n \in \mathbb{N}_0$.

Finally, we introduce Birman-Schwinger type operators and related quantities. We distinguish three cases and again study even (open) gaps ρ_{2n} , $n \in \mathbb{N}_0$ for simplicity.

(a) $W \leq 0$. We factorize

(29)
$$w := |W|^{1/2}, \qquad W = -w^2,$$

and define the Birman-Schwinger kernel by

(30)
$$k(\lambda) := -gw(H_0 - \lambda)^{-1}w, \quad \lambda \in \rho_{2n}, \quad n \in \mathbb{N}_0, \quad g > 0.$$

Then the selfadjoint Birman-Schwinger kernel satisfies $k(\lambda) \in \mathcal{B}_2(L^2(\mathbb{R}))$ ($\mathcal{B}_2(\cdot)$ the set of Hilbert-Schmidt operators) and due to (24)–(26)

(31)
$$k(\lambda) = -\gamma(\lambda)gP(\lambda) - gM(\lambda), \qquad \lambda \in \rho_{2n},$$
$$\gamma(\lambda) = C_{4n} |\alpha(\lambda)|^{-1}, \qquad C_{4n-1} < 0 < C_{4n}, \quad n \in \mathbb{N}_0,$$

where $P(\lambda)$, $\lambda \in \overline{\rho_{2n}}$, is a positive rank one projection, $M(\lambda) \in \mathscr{B}_2(L^2(\mathbb{R}))$, $\lambda \in \overline{\rho_{2n}}$, is selfadjoint, and

(32)
$$||M(\lambda)|| \leq C E_{4n-1}^{-1/2}, \qquad \lambda \in \overline{\rho_{2n}}, \quad n \in \mathbb{N}_0,$$

with C independent of n. (One can show that $\alpha(\lambda) = d_{4n} |\lambda - E_{4n}|^{1/2}$

for some constants $d_{4n} > 0$.)

(b) $W \ge 0$. Introducing the factorization

(33)
$$w := |W|^{1/2}, \qquad W = w^2,$$

one defines

(34)
$$\hat{k}(\lambda) := gw(H_0 - \lambda)^{-1}w, \quad \lambda \in \rho_{2n}, \quad n \in \mathbb{N}_0, \quad g > 0.$$

Then $\hat{k}(\lambda) \in \mathcal{B}_2(L^2(\mathbb{R}))$ and (31) and (32) (with $\gamma \to -\gamma$) hold again.

(c) $W=W_+-W_-$, $W_\pm>0$ on sets of positive Lebesgue measure. If necessary, we modify W_\pm such that

$$W = W_{+} - W_{-} = \widetilde{W}_{+} - \widetilde{W}_{-},$$

$$\widetilde{W}_{\pm} \ge (1 + x^{2})^{-1 - \varepsilon}, \qquad \varepsilon > 0, \quad \widetilde{W}_{\pm} \in L^{1}(\mathbb{R}, (1 + |x|)dx),$$

$$\widetilde{w}_{+} := \widetilde{W}_{+}^{1/2}.$$

Following a device of Simon [16] we define the selfadjoint Birman-Schwinger kernel by

(36)
$$\widetilde{K}(\lambda) := g\widetilde{w}_{+}(H_0 - g\widetilde{W}_{-} - \lambda)^{-1}\widetilde{w}_{+} \in \mathscr{B}_2(L^2(\mathbb{R})),$$

$$\lambda \in \rho_{2n} \setminus \sigma_{\mathbf{p}}(H_0 - g\widetilde{W}_{-}), \quad n \in \mathbb{N}_0, \quad g > 0.$$

The fact that $\widetilde{K}(\lambda)$ is selfadjoint (as opposed to the usual choice

$$|W|^{1/2}\operatorname{sgn}(W)(H_0-\lambda)^{-1}|W|^{1/2}),$$

even though W changes sign, will be of crucial importance below. (This trick has also been employed successfully in [7].)

Given all these preliminaries we now turn to the

Proof of Theorem 1. It suffices to treat the even open gaps ρ_{2n} , $n \in \mathbb{N}_0$. (A) W < 0. Since

(37)
$$\frac{d}{d\lambda}k(\lambda) = -gw(H_0 - \lambda)^{-2}w \leq 0, \qquad \lambda \in \rho_{2n}, \quad n \in \mathbb{N}_0,$$

all eigenvalues of $k(\lambda)$ are monotonically decreasing with respect to $\lambda \in \rho_{2n}$. Moreover, by the Birman-Schwinger principle [12], $H_g = H_0 - g|W|$ has an eigenvalue $E^* \in \rho_n$ iff $k(E^*)$ has an eigenvalue -1 of the same multiplicity. Since E^* is necessarily simple, no eigenvalues of $k(\lambda)$ can cross in ρ_n . Because of (31), $k(\lambda)$ has precisely one eigenvalue decreasing from $+\infty$ at E_{4n-1} to $O(E_{4n-1}^{-1/2})$ near E_{4n} and one eigenvalue branch decreasing from $O(E_{4n-1}^{-1/2})$ near E_{4n-1} to $-\infty$ at E_{4n} (assuming n large enough such that $E_{4n-1} >> 1$). The remaining eigenvalues of $k(\lambda)$ in ρ_{2n} are of order $O(E_{4n-1}^{-1/2})$ for n large enough. Thus choosing n sufficiently large, precisely one eigenvalue of $K(\lambda)$ (the one diverging to $-\infty$) will cross -1. Since $k(\lambda)$ is compact, only finitely many eigenvalues of $k(\lambda)$ cross -1 in each gap ρ_n . This proves (i) and (iii) for $W \leq 0$.

Since $W \ge 0$ can be dealt with analogously, the only difference being that now $\frac{d}{d\lambda}\hat{k}(\lambda) \ge 0$ on ρ_n and hence the eigenvalues of $\hat{k}(\lambda)$ are monotonically increasing (accounting for no eigenvalue crossing of the line -1 on ρ_0 since $\hat{k}(\lambda) \ge 0$ on ρ_0), we immediately turn to the general case.

(B) $sgn(W) \neq constant$.

Throughout the rest of the proof we assume that $\lambda \in \overline{\rho_{2n}}$ with *n* large enough unless otherwise stated. We start with the elementary identity

(38)
$$\widetilde{K}_{-}(\lambda) := g\widetilde{w}_{-}(H_{0} \dot{-} \widetilde{W}_{-} - \lambda)^{-1}\widetilde{w}_{-}$$

$$= -1 + [1 - g\widetilde{w}_{-}(H_{0} - \lambda)^{-1}\widetilde{w}_{-}]^{-1}$$

$$:= -1 + [1 + \widetilde{k}_{-}(\lambda)]^{-1}, \qquad \lambda \in \rho_{2n} \setminus \{E_{2n}^{*}\},$$

where E_{2n}^* denotes the unique eigenvalue of $H_0 - g\widetilde{W}_-$ in ρ_{2n} determined in Part A. We note that

(39)
$$\widetilde{k}_{-}(\lambda) = -\widetilde{\gamma}(\lambda)g\widetilde{P}_{-}(\lambda) - g\widetilde{M}_{-}(\lambda), \qquad \lambda \in \rho_{2n},$$

where the selfadjoint rank-one operator $\widetilde{P}_{-}(\lambda)$, $\lambda \in \overline{\rho_{2n}}$, has the integral kernel

(40)
$$\left[\int_{\mathbb{R}} dy \widetilde{W}_{-}(y) P_{x_0}(\lambda, y, y) \right]^{-1} \widetilde{w}_{-}(x) P_{x_0}(\lambda, x, x') \widetilde{w}_{-}(x'), \qquad \lambda \in \overline{\rho_{2n}},$$

(41)
$$\widetilde{\gamma}(\lambda) := \gamma(\lambda) \int_{\mathbb{R}} dx \widetilde{W}_{-}(y) P_{x_0}(\lambda, x, x, y), \qquad \lambda \in \rho_{2n},$$

and $\widetilde{M}_{-}(\lambda) \in \mathscr{B}_{2}(L^{2}(\mathbb{R}))$, $\lambda \in \overline{\rho_{2n}}$, is selfadjoint with integral kernel

(42)
$$\tilde{w}_{-}(x)G_{0,x_{0}}^{D}(\lambda, x, x')\tilde{w}_{-}(x'), \qquad \lambda \in \overline{\rho_{2n}}.$$

Next we introduce the orthogonal projection

(43)
$$\widetilde{Q}_{-}(\lambda) := 1 - \widetilde{P}_{-}(\lambda), \qquad \lambda \in \overline{\rho_{2n}},$$

and insert (39) into (38). Assuming $\varepsilon_n > 0$ sufficiently small, a straightforward computation (inverting 1+rank one + perturbation) then yields for the behavior of $\widetilde{K}_{-}(\lambda)$ near the band edges E_{4n-1} , E_{4n} ,

(44)

$$\begin{split} \widetilde{K}_{-}(\lambda) &= -1 - \widetilde{P}_{-}(\lambda) + [1 - g\widetilde{Q}_{-}(\lambda)\widetilde{M}_{-}(\lambda)\widetilde{Q}_{-}(\lambda)]^{-1} + O(\gamma(\lambda)^{-1}) \\ &= -\widetilde{P}_{-}(\lambda) + \widetilde{Q}_{-}(\lambda)\{[1 - g\widetilde{Q}_{-}(\lambda)\widetilde{M}_{-}(\lambda)\widetilde{Q}_{-}(\lambda)]^{-1} - 1\}\widetilde{Q}_{-}(\lambda) + O(\gamma(\lambda)^{-1}) \\ &= \begin{pmatrix} -1 & O \\ O & [1 - g\widetilde{Q}_{-}(\lambda)\widetilde{M}_{-}(\lambda)\widetilde{Q}_{-}(\lambda)]^{-1} - 1 \end{pmatrix} + O(\gamma(\lambda)^{-1}), \\ \lambda \in [E_{4n-1}, E_{4n-1} + \varepsilon_n] \cup [E_{4n} - \varepsilon_n, E_{4n}], \end{split}$$

with respect to the decomposition $L^2(\mathbb{R}) = \widetilde{P}_-(\lambda)L^2(\mathbb{R}) \oplus \widetilde{Q}_-(\lambda)L^2(\mathbb{R})$. (Here the symbol $O(\gamma(\lambda)^{-1})$ denotes a compact operator with norm bounded by $C|\gamma(\lambda)|^{-1}$.) In particular,

(45)
$$\|\widetilde{K}_{-}(\lambda)\| = O(1), \qquad \lambda \in [E_{4n-1}, E_{4n-1} + \varepsilon_n] \cup [E_{4n} - \varepsilon_n, E_{4n}]$$

for $\varepsilon_n > 0$ sufficiently small. Noticing that

(46)
$$\widetilde{K}(\lambda) = (\widetilde{w}_+/\widetilde{w}_-)\widetilde{K}_-(\lambda)(\widetilde{w}_+/\widetilde{w}_-), \qquad \lambda \in \overline{\rho_{2n}} \setminus \{E^*\},$$

we infer for the behavior of $\widetilde{K}(\lambda)$ near the band edges E_{4n-1} , E_{4n} that

$$\widetilde{K}(\lambda) = -\widetilde{P}(\lambda) + (\widetilde{w}_{+}/\widetilde{w}_{-})\widetilde{Q}_{-}(\lambda)\{[1 - g\widetilde{Q}_{-}(\lambda)\widetilde{M}_{-}(\lambda)\widetilde{Q}_{-}(\lambda)]^{-1} - 1\}
\cdot \widetilde{Q}_{-}(\lambda)(\widetilde{w}_{+}/\widetilde{w}_{-}) + O(\gamma(\lambda)^{-1})
:= -\widetilde{P}(\lambda) + \widetilde{L}(\lambda) + O(\gamma(\lambda)^{-1}),
\lambda \in [E_{4n-1}, E_{4n-1} + \varepsilon_{n}] \cup [E_{4n} - \varepsilon_{n}, E_{4n}].$$

Here $\widetilde{P}(\lambda)$ has the integral kernel

(48)
$$\left[\int_{\mathbb{R}} dy \, \widetilde{W}_{-}(y) P_{x_0}(\lambda, y, y) \right]^{-1} \widetilde{w}_{+}(x) P_{x_0}(\lambda, x, x') \widetilde{w}_{+}(x'), \qquad \lambda \in \overline{\rho_{2n}},$$

and by using a geometric series expansion one checks that $\widetilde{L}(\lambda)$ indeed extends to a $\mathscr{B}_2(L^2(\mathbb{R}))$ -operator for $\lambda \in [E_{4n-1}, E_{4n-1} + \varepsilon_n] \cup [E_{4n} - \varepsilon_n, E_{4n}]$ with $\varepsilon_n > 0$ sufficiently small. Moreover,

(49)
$$\|\widetilde{L}(\lambda)\| = O(E_n^{-1/2}), \quad \lambda \in [E_{4n-1}, E_{4n-1} + \varepsilon_n] \cup [E_{4n} - \varepsilon_n, E_{4n}].$$

It remains to study $\widetilde{K}(\lambda)$ near E_{2n}^* . By (38) we have

(50)
$$\widetilde{K}_{-}(\lambda) = -\widetilde{k}_{-}(\lambda)[1 + \widetilde{k}_{-}(\lambda)]^{-1} \\ = -\mu_{1}(\lambda)g[1 + \mu_{1}(\lambda)g]^{-1}P_{1}(\lambda) - gR_{1}(\lambda)[1 + gR_{1}(\lambda)]^{-1}, \\ \lambda \in \rho_{2n} \setminus \{E_{2n}^{*}\},$$

where we used the spectral representation for $\tilde{k}_{-}(\lambda)$,

(51)
$$\tilde{k}_{-}(\lambda) = \mu_{1}(\lambda)gP_{1}(\lambda) + gR_{1}(\lambda),$$

$$P_{1}(\lambda)R_{1}(\lambda) = R_{1}(\lambda)P_{1}(\lambda) = 0, \quad \lambda \in \rho_{2n}.$$

with $\mu_1(\lambda)g$ the unique eigenvalue branch of $\tilde{k}_-(\lambda)$ diverging to $-\infty$ as $\lambda \uparrow E_{4n}$, $P_1(\lambda)$ the associated rank one projection onto the corresponding eigenspace, and

(52)
$$||R_1(\lambda)|| \le C|E_{4n-1}|^{-1/2}, \qquad \lambda \in \overline{\rho_{2n}},$$

by (32). By (46), (50) yields an analogous formula for $\widetilde{K}(\lambda)$, $\lambda \in \rho_{2n} \setminus \{E_{2n}^*\}$. Given these results one can now finish the proof (similar to Part A). Since

(53)
$$\frac{d}{d\lambda}\widetilde{K}(\lambda) = g\widetilde{w}_{+}(H_0 - g\widetilde{W}_{-} - \lambda)^{-2}\widetilde{w}_{+} \geq 0, \qquad \lambda \in \rho_n,$$

all eigenvalues of $\widetilde{K}(\lambda)$ are monotonically increasing with respect to $\lambda \in \rho_n$. By the Birman-Schwinger principle, $H_g = H_0 \dotplus gW$ has an eigenvalue $E^* \in \rho_n$ iff $\widetilde{K}(E^*)$ has an eigenvalue -1 with multiplicities preserved. Since H_g has only simple eigenvalues, again no eigenvalue crossing of $\widetilde{K}(\lambda)$ occurs in ρ_n . Due to (47), (49), (50), and its analog for $\widetilde{K}(\lambda)$, $\widetilde{K}(\lambda)$ has precisely one eigenvalue branch $\nu_1(\lambda)$ in (E^*_{2n}, E_{4n}) that is monotonically increasing from $-\infty$ at E^*_{2n} to O(1) near E_{4n} , all other eigenvalues of $\widetilde{K}(\lambda)$ in (E^*_{2n}, E_{4n}) being $O(E^{-1/2}_{4n-1})$. Similarly, there is precisely one monotonically increasing eigenvalue branch $\nu_2(\lambda)$ of $\widetilde{K}(\lambda)$ in (E_{4n-1}, E^*_{2n}) that is $O(E^{-1/2}_{4n-1})$ near E_{4n-1} and $+\infty$ at E^*_{2n} , and precisely one eigenvalue branch $\nu_3(\lambda)$ that is O(1) near E_{4n-1} and $O(E^{-1/2}_{4n-1})$ near E^*_{2n} , all other eigenvalues of $\widetilde{K}(\lambda)$ being $O(E^{-1/2}_{4n-1})$ throughout (E_{4n-1}, E^*_{2n}) . The O(1) branches near E_{4n} are of course due to $\widetilde{P}(\lambda)$ in (47) (see also (48)). Given n sufficiently large we thus have the following distinctions:

(a) If $\int_{\mathbb{R}} dx W(x) > O$, then (20), (25), and (48) imply that only $\nu_3(\lambda)$

- (b) If $\int_{\mathbb{R}} dx W(x) < O$, then (20), (25), and (48) imply that only $\nu_1(\lambda)$ crosses -1.
- (c) If $\int_{\mathbb{R}} dx W(x) = O$, then $\nu_1(\lambda)$, $\nu_3(\lambda)$ may or may not cross -1 and we have either 0, 1, or 2 eigenvalues in ρ_{2n} .

Since $\widetilde{K}(\lambda)$ is compact, only finitely many eigenvalues can cross -1 in each gap ρ_n . This completes the proof of Theorem 1. \square

Since one can replace the phrase "for n large enough" by "g > 0 sufficiently small" in every step of the above proof, Theorem 1 can also be viewed as a "weak-coupling" result in the following sense:

Theorem 3. Assume Hypothesis (I). Then

- (i) H_g has at most two eigenvalues in every open gap ρ_n , $n \in \mathbb{N}_0$ for g > 0 sufficiently small.
 - (ii) Abbreviate

(54)
$$I(E_{2n}) := \int_{\mathbb{R}} dx W(x) p(\alpha(E_{2n}), x, x_0)^2, \qquad n \in \mathbb{N}_{(0)},$$

and assume that g>0 is small enough. Then H_g has no eigenvalues in $\rho_n=(E_{2n-1},E_{2n})$, $n\in\mathbb{N}$ if $I(E_{2n-1})<0$ and $I(E_{2n})>0$, H_g has precisely one eigenvalue in ρ_n if $I(E_{2n-1})<0$ and $I(E_{2n})<0$ or $I(E_{2n-1})>0$ and $I(E_{2n})>0$, and H_g has two eigenvalues in ρ_n if $I(E_{2n-1})>0$ and $I(E_{2n})<0$. Moreover, H_g has no eigenvalues in $\rho_0=(-\infty,E_0)$ if $I(E_0)>0$ and precisely one eigenvalue in ρ_0 if $I(E_0)\leq0$.

Proof. By the paragraph preceding Theorem 3 we only need to demonstrate the last assertion in the case $I(E_0) = 0$. For that purpose we first prove that $R_0(E_0, x, x')$ (see (22) and (24)) is conditionally positive definite, i. e.,

$$\int_{\mathbb{R}^2} dx \, dx' W(x) p(\alpha(E_0), x, x_0) R_0(E_0, x, x') W(x') p(\alpha(E_0), x', x_0) > 0$$
if $I(E_0) = \int_{\mathbb{R}} dx W(x) p(\alpha(E_0), x, x_0)^2 = 0$.

(We also note that $R_0(E_0, x, x') = G_{0,x_0}^D(E_0, x, x')$.) In order to prove (55) we invoke the eigenfunction expansion associated with H_0 . Let

(56)
$$f(\cdot) = s - \lim_{R \to \infty} (2\pi)^{-1/2} \int_{|\beta| \le R} d\beta \, \hat{f}_{\pm}(\beta) \Psi_{\mp}(\beta, \cdot),$$
$$\hat{f}_{\pm}(\cdot) = s - \lim_{R \to \infty} (2\pi)^{-1/2} \int_{|y| \le R} dy \, f(y) \Psi_{\pm}(\cdot, y), \qquad f \in L^{2}(\mathbb{R}),$$

where

(57)
$$\Psi_{\pm}(\beta, x) := a^{1/2} \left[\int_{x_0}^{x_0 + a} dy \psi_{-}(z(\beta), y, x_0) \psi_{+}(z(\beta), y, x_0) \right]^{-1/2} \cdot \psi_{+}(z(\beta)x, x_0),$$

(58)
$$\Psi_{\pm}(-\beta, x) = \Psi_{\mp}(\beta, x) = \overline{\Psi_{\pm}(\beta, x)}, \qquad \beta \in \mathbb{R},$$

and

(59)
$$\cosh[\beta(z)a] = \Delta(z), \quad \sinh[\beta(z)a] = [\Delta(z)^2 - 1]^{1/2}$$

with $\beta(z)$ an appropriate analytic continuation of arc $\sinh\{[\Delta(z)^2-1]^{1/2}\}$ to the Riemann surface \mathscr{R} (see, e.g., [5] for more details). If $f\in L^1(\mathbb{R})$ then the integral for \hat{f}_{\pm} in (56) becomes an ordinary Lebesgue integral over \mathbb{R} since $\Psi_{\pm}(\beta\,,\,x)$ is uniformly bounded in $x\in\mathbb{R}$. (If V=0 then $\Psi_{\pm}(\beta\,,\,x)=e^{\pm i\beta x}$.) We also note that

(60)
$$z(\beta) = E_0 + (2\mathcal{H}_0)^{-1}\beta^2 + O(\beta^4)$$

for some $\mathcal{H}_0 > 0$. Next we define

(61)
$$\omega(\cdot) := W(\cdot)p(\alpha(E_0), \cdot, x_0)$$

and compute for $\lambda < E_0$,

(62)
$$\int_{\mathbb{R}^{2}} dx \, dx' \omega(x) R_{0}(\lambda, x, x') \omega(x') = \int_{\mathbb{R}^{2}} dx \, dx' \omega(x) G_{0}(\lambda, x, x') \omega(x') \\ = \int_{\mathbb{R}} d\beta |\hat{\omega}_{+}(\beta)|^{2} [z(\beta) - \lambda]^{-1},$$

where we used (22) together with $I(E_0) = 0$ in the first equality and

(63)
$$((H_0 - \lambda)^{-1} \Psi_{\pm}(\beta(z), x) = [z(\beta) - \lambda]^{-1} \Psi_{\pm}(\beta(z), x),$$

$$z(\beta) \ge E_0, \ \beta \in \mathbb{R},$$

(64)
$$(2\pi)^{-1} \int_{\mathbb{R}} dx \Psi_{-}(\beta, x) \Psi_{+}(\beta', x) = \delta(\beta - \beta')$$

(in the distributional sense) and the real-valuedness of ω in the second equality. Since $p(\alpha(E_0), x, x_0)$ is uniformly bounded in $x \in \mathbb{R}$ we have

$$\omega \in L^1(\mathbb{R}; (1+|x|dx))$$

and hence

by (23) and the monotone convergence theorem. This proves (55). It remains to go through the proof of Theorem 1 step-by-step. In fact, let E_0^* be the unique eigenvalue of $H_0 \dot{-} g \widetilde{W}_-$ in $\rho_0 = (-\infty, E_0)$ determined by Part A of the proof of Theorem 1. Since (53) remains valid for n = 0, and

(66)
$$(H_0 - g\widetilde{W}_- - \lambda)^{-1} \ge 0 \text{ for } \lambda \in (-\infty, E_0^*),$$

we have

(67)
$$\widetilde{K}(\lambda) \geq 0 \quad \text{for } \lambda \in (-\infty, E_0^*).$$

Thus no eigenvalue branch of $\widetilde{K}(\lambda)$ can cross -1 for $\lambda < E_0^*$. In the interval (E_0^*, E_0) there is precisely one eigenvalue branch $\nu_1(\lambda)$ that is monotonically increasing from $-\infty$ at E_0^* to O(1) near E_0 , all other eigenvalues of $\widetilde{K}(\lambda)$ being O(g) throughout $[E_0^*, E_0]$. In order to prove that $\nu_1(\lambda)$ actually crosses

-1 for g>0 small enough we next consider $\widetilde{K}(E_0)=n-\lim_{\lambda\uparrow E_0}\widetilde{K}(\lambda)$. In analogy to (44) one proves

(68)
$$\widetilde{K}_{-}(E_0) = -\widetilde{P}_{-}(E_0) + g\widetilde{Q}_{-}(E_0)\widetilde{M}_{-}(E_0)\widetilde{Q}_{-}(E_0) + O(g^2),$$

where $O(g^2)$ denotes a compact operator with norm bounded by Cg^2 . This yields

(69)
$$\widetilde{K}(E_0) = -\widetilde{P}(E_0) + g(\widetilde{w}_+/\widetilde{w}_-)\widetilde{Q}_-(E_0)\widetilde{M}_-(E_0)\widetilde{Q}_-(E_0)(\widetilde{w}_+/\widetilde{w}_-) + O(g^2)$$

where $\widetilde{P}(E_0)$ is an orthogonal projection with integral kernel (see (22), (25) and (48))

(70)

$$\left[\int_{\mathbb{R}} dy \widetilde{W}_{+}(y) p(\alpha(E_{0}), y, x_{0})^{2}\right]^{-1} \widetilde{w}_{+}(x) p(\alpha(E_{0}), x, x_{0}) p(\alpha(E_{0}), x', x_{0}) \widetilde{w}_{+}(x')$$

since $I(E_0)=0$, and \widetilde{M}_- , \widetilde{Q}_- have been introduced in (42), (43). A simple computation then yields

(71)
$$(\tilde{w}_{+}p(\alpha(E_{0}), \cdot, x_{0}), \tilde{K}(E_{0})\tilde{w}_{+}p(\alpha(E_{0}), \cdot, x_{0}))/\|\tilde{w}_{+}p(\alpha(E_{0}), \cdot x_{0})\|^{2}$$

$$= -1 + g \iint_{\mathbb{R}^{2}} dx \, dx' \omega(x) R_{0}(E_{0}, x, x') \omega(x') + O(g^{2}).$$

By (55) this indeed proves that $\nu_1(\lambda)$ crosses -1 for g>0 sufficiently small. \square

Remark 4. To the best of our knowledge the fact that $R_0(E_0, x, x')$ is conditionally positive definite (in the sense of (55)) and that for g > 0 small enough H_g has precisely one eigenvalue in $\rho_0 = (-\infty, E_0)$ if $I(E_0) = 0$ appears to be new. It generalizes a corresponding result of [15] (extended in [9]) in the special case where $V \equiv 0$.

Evidently, our strategy of using a selfadjoint Birman-Schwinger kernel, even if $sgn(W) \neq constant$, extends to perturbed one-dimensional periodic Dirac operators and weakly perturbed second-order finite difference operators.

Finally, we remark that Theorem 1, in particular, implies that N-soliton solutions of the Korteweg-de Vries equation relative to a periodic background solution (i.e., relative reflectionless solutions) will in general not decay as $x \to +\infty$ and $x \to -\infty$ since by definition they are associated with the insertion of N eigenvalues in the spectral gaps of the period background Hamiltonian.

ACKNOWLEDGMENT

F. Gesztesy would like to acknowledge an illuminating discussion with M. Klaus.

REFERENCES

- 1. R. Blankenbecler, M. L. Goldberger, and B. Simon, *The bound states of weakly coupled long-range one-dimensional quantum Hamiltonians*, Ann. Phys. **108** (1977), 69-78.
- 2. M. S. P. Eastham, *The spectral theory of periodic differential equations*, Scottish Academic Press, Edinburgh, 1973.
- 3. N. E. Firsova, Trace formula for a perturbed one-dimensional Schrödinger operator with a periodic potential. I, Problemy Mat. Fiz. 7 (1974), 162-177. (Russian)

- 4. ____, Trace formula for a perturbed one-dimensional Schrödinger operator with a periodic potential. II, Problemy Mat. Fiz. 8 (1976), 158-171. (Russian)
- 5. _____, Riemann surface of quasimomentum and scattering theory for the perturbed Hill operator, J. Soviet Math. 11 (1979), 487-497.
- 6. _____, Levinson formula for perturbed Hill operator, Theoret. and Math. Phys. 62 (1985), 130-140.
- 7. F. Gesztesy and B. Simon, On a theorem of Deift and Hempel, Comm. Math. Phys. 161 (1988), 503-505.
- 8. D. B. Hinton, M. Klaus, and J. K. Shaw, On the Titchmarsh-Weyl function for the half-line perturbed periodic Hill's equation, Quart. J. Math. Oxford (2) 41 (1990), 189-224.
- 9. M. Klaus, On the bound states of Schrödinger operators in one dimension, Ann. Phys. 108 (1977), 288-300.
- 10. B. M. Levitan, Inverse Sturm-Liouville problems, VNU Science Press, Utrecht, 1987.
- 11. V. A. Marchenko, Sturm-Liouville operators and applications, Birkhäuser, Basel, 1986.
- 12. M. Reed and B. Simon, *Methods of modern mathematical physics*. IV, Analysis of Operators, Academic Press, New York, 1978.
- 13. F. S. Rofe-Beketov, Perturbation of a Hill operator having a first moment and nonzero integral creates one discrete level in distant spectral gaps, Mat. Fizika i Funkts. Analiz. (Khar'kov) 19 (1973), 158-159. (Russian)
- 14. _____, A test for the finiteness of the number of discrete levels introduced into gaps of a continuous spectrum by perturbations of a periodic potential, Soviet Math. Dokl. 5 (1964), 689-692.
- 15. B. Simon, The bound states of weakly coupled Schrödinger operators in one and two dimensions, Ann. Phys. 97 (1976), 279–288.
- Brownian motion, L^p properties of Schrödinger operators and the localization of binding, J. Funct. Anal. 35 (1980), 215-229.
- 17. V. A. Zheludev, Eigenvalues of the perturbed Schrödinger operators with a periodic potential, Topics in Mathematical Physics (M. Sh. Birman, ed.), Vol. 2, Consultants Bureau, New York, 1968, pp. 87-101.
- 18. ____, Perturbation of the spectrum of the one-dimensional self-adjoint Schrödinger operator with a periodic potential, Topics in Mathematical Physics (M. Sh. Birman, ed.), Vol. 4, Consultants Bureau, New York, 1971, pp. 55-75.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MISSOURI 65211 E-mail address: mathfg@mizzou1.missouri.edu

Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125